



# CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010

Presented By:

Craig Gee, Project Manager

(for Mr. Eduardo Alegria – Principal Investigator)



## **Agenda**

- Introduction Who we are
- Project Team & Site
- Project Purpose & Objectives
- Project Impacts
- System Elements
- Project Status
- Research Elements
- Recent Developments in California
- Questions & Comments

#### **Chevron Energy Solutions**

#### Designed & Implemented over 900 Projects in the U.S.



- Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green energy programs to the institutions & businesses.
  - One-stop shop from project conception to commissioning, Chevron ES provides:
    - Innovative Design + Demonstration
    - Engineering + design
    - Project + construction management
    - Incentive + rebate assistance
    - Project financing minimize capital investment, leverage bond dollars and develop paid through savings programs
    - Monitoring + verification
  - Comprehensive solution-based energy programs
    - Clean onsite power generation
    - Energy management systems/controls and retro-commissioning
    - Lighting retrofits and redesign
    - Heating Ventilation and Air Conditioning (HVAC) upgrade/retrofits
    - Central Plant, Utility Infrastructure, Power Reliability



#### **Project Partners**

- Chevron Energy Solutions (Principal)
- Alameda County, California Santa Rita Jail (Host)
  And...













#### **Project Team**



- Chevron Energy Solutions
  - Eduardo Alegria, Principal Investigator
  - Dave Potter, Senior Project Director
  - Craig Gee, Project Manager
  - Timothy Moriarty, Project Administrator
- Alameda County, California
  - Matt Muniz, Energy Program Manager
- Design, Development, Equipment, and Construction Subcontractor Partners



#### **Advisors**

- Eduardo Alegria, Senior Power Systems Engineer and PI
  - Chevron Energy Solutions
- Dr. Robert Lasseter, Professor, Electrical Engineering
  - University of Wisconsin
- Joe Eto, Staff Scientist, EETD
  - Lawrence Berkeley National Laboratory
- Janice Lin, Managing Partner
  - Strategen Consulting



#### **Project Site**

#### Alameda County, Santa Rita Jail

#### Needs:

- Reduce peak electricity demand/demand response
- Improve the security and reliability of power supply
- Environmental Leadership
- Clean backup power source for jail

#### Solutions:

- 1 MW fuel cell power plant
- Heat recovery cogeneration: hot water and space heating inside jail
- Support existing 1.2 MW solar on rooftops (see picture)

#### **Process:**

- CES worked with FuelCell Energy to engineer applications, integrate components, and install systems
- Seamless project management to ensure health and safety of inmates

#### **Benefits:**

- Fuel Cells provide among the cleanest, most reliable sources of power generation
- High quality power 24 hours a day
- Ultra-low emissions and quiet operation
- CES Captured Incentives:
  - \$1.4 million PG&E
  - \$1 million DOD Climate Change Fuel Cell Program
  - \$2.8 million energy savings
  - \$900K energy incentives







#### **Project Objectives**

- Demonstrate the commercial implementation of a CERTS microgrid combined with large-scale energy storage, photovoltaics, wind, a fuel cell and back-up diesel generators to enable future applications
- Reduce peak load of utility distribution feeder by increasing the utilization of significant and diverse distributed energy resources (DER) to intelligently supply peak power.



#### **Project Objectives (continued)**

- Improve grid reliability by providing dispatchable renewable energy and other ancillary services to support electric distribution systems
- Increase grid efficiency and security through the development of monitoring, diagnostic, and automation capabilities and research of communications and control technologies, including identification of SCADA requirements
- Meet customer quality and reliability requirements to ensure secure operation and reduce costs

# Modern Grid Project Characteristics and Impacts



| Modern Grid Characteristic                                   | Proposed Project Impact                                                                                                                                                                 |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Self-healing                                                 | The CERTS microgrid automatically detects and responds to actual and emerging transmission and distribution problems. By reducing peak load, problems can be prevented                  |
| Motivates and Includes the<br>Consumer                       | The consumer is actively involved in microgrid deployment and control of distributed energy resources. Significant demand response capabilities supports the grid                       |
| Resists Attack                                               | Autonomous microgrid operation resists attack and reduces burden on the grid during restoration                                                                                         |
| Provides Power Quality for 21 <sup>st</sup><br>Century Needs | Uninterrupted power is reliably delivered to the consumer to consistently meet total consumer load                                                                                      |
| Accommodates all Generation and Storage Options              | Microgrid "plug and play" convenience allows easy addition of diverse DER; this project accommodates a large-scale battery, photovoltaics, wind, a CHP fuel cell, and diesel generators |
| Enables Markets                                              | Project potential to sell wholesale power back to the grid; enables PV, fuel cell and storage markets                                                                                   |
| Optimizes Assets and Operates<br>Efficiently                 | Monitoring and control system developed to utilize DER assets, and provide remote monitoring capability, and a platform for potential asset dispatch ability.                           |



## **System Elements**

- Existing 1 MW Fuel Cell + 1.2MW Solar PV with Backup Diesel Generators
- Add 2 MW (12 MWH) Battery
- Plus CERTS Microgrid-enabled control logic
- Plus Fast Static Disconnect Switch to enable islanded operation during periods of grid instability or outage
- During short term outages, battery picks up the extra load
- During extended outages, diesel generators fire-up to recharge battery or provide power as needed



# **Host Site Layout**





# **System Design – Load Impacts**

Cloudy Spring Day – Solar Output Uneven







- Project Kickoff
- Planning
- Continued Team and Subteam Formation
- System Design and Development
- Component Specification
- Budget and Schedule Refinement
- Equipment Procurement
- Construction Pre-planning and Kickoff Meetings
- Construction Implementation by Zones & Phases
- Startup, Testing, and Commissioning
- Training and Transfer of Documentation
- Post Installation Review and Evaluation



#### **Project General Timeline**

#### SRJ Microgrid Advanced Energy Storage – Development and Construction High Level Timeline





#### **Research Elements**

- Metering, Monitoring, and Design Approach
  - Power Quality metering at all significant power sources: Fuel Cell, Diesel Generators, Battery, Utility PCC
  - Energy metering at all four feeder locations.
  - National Renewable Energy Laboratory input and evaluation
- Economic and User Benefits
  - Lawrence Berkeley National Laboratory input and evaluation
  - StrateGen to evaluate from an "Energy Program Manager" perspective.

# **National Renewable Energy Laboratory**



#### Organizational Strengths

- Integration of Renewable Energy Resources.
- Power Electronic Systems Design Approach and Design **Flements**

#### Research Contribution

- System design review
- Team with CES and LBNL to gather and analyze utility feeder load data, and upstream utility distribution feeder configuration and characteristic
- Development of an Electrical Simulation Model
- Post-system startup use of collected data to validate and/or show discrepancies with the developed model.



#### **Lawrence Berkeley National Laboratory**

- Organizational Strengths
  - Microgrid Economic Benefits
- Research Contribution
  - Collection and analysis of utility distribution feeder data as relates to Microgrid peak feeder load reduction approach and impact
  - Analysis regarding future approaches to increase peak feeder load reduction impact
  - Incorporate rate tariffs into analysis
  - Facility analysis with California ISO involvement relating to their focus relating to renewable energy penetration, demand response, and ancillary services
  - Seasonally based charge / discharge schedule, and potential "week-ahead" energy storage scheduling



# **Charge / Discharge Profiles**





#### **StrateGen**

- Organizational Strengths
  - Energy Industry and Policy Analysis
- Research Contribution
  - Project Economic Analysis useful to other communities or projects considering implementation of similar systems
  - Project Case Study with an "end-user" perspective, quantifiable benefits, and subjective benefits



## Recent Regulatory History in California

- CPUC Approves Big Bold Action Plan (May 2008)
  - New Residential developments must be "net zero energy" by 2020
  - New Commercial developments must be "net zero energy" by 2030
- CPUC Proposed Decision (Peevey on 10/22/2008)
  - New Incentive of \$2/Watt of Installed capacity for Advanced Energy Storage when coupled with behind the meter Wind or Fuel Cell systems (up to 3 MW)



# **Thank You!**

